Extensions 1→N→G→Q→1 with N=C44 and Q=C23

Direct product G=NxQ with N=C44 and Q=C23
dρLabelID
C23xC44352C2^3xC44352,188

Semidirect products G=N:Q with N=C44 and Q=C23
extensionφ:Q→Aut NdρLabelID
C44:C23 = C2xD4xD11φ: C23/C2C22 ⊆ Aut C4488C44:C2^3352,177
C44:2C23 = C22xD44φ: C23/C22C2 ⊆ Aut C44176C44:2C2^3352,175
C44:3C23 = C22xC4xD11φ: C23/C22C2 ⊆ Aut C44176C44:3C2^3352,174
C44:4C23 = D4xC2xC22φ: C23/C22C2 ⊆ Aut C44176C44:4C2^3352,189

Non-split extensions G=N.Q with N=C44 and Q=C23
extensionφ:Q→Aut NdρLabelID
C44.1C23 = D8xD11φ: C23/C2C22 ⊆ Aut C44884+C44.1C2^3352,105
C44.2C23 = D4:D22φ: C23/C2C22 ⊆ Aut C44884C44.2C2^3352,106
C44.3C23 = D8:3D11φ: C23/C2C22 ⊆ Aut C441764-C44.3C2^3352,107
C44.4C23 = SD16xD11φ: C23/C2C22 ⊆ Aut C44884C44.4C2^3352,108
C44.5C23 = D88:C2φ: C23/C2C22 ⊆ Aut C44884+C44.5C2^3352,109
C44.6C23 = D4.D22φ: C23/C2C22 ⊆ Aut C441764-C44.6C2^3352,110
C44.7C23 = Q8.D22φ: C23/C2C22 ⊆ Aut C441764C44.7C2^3352,111
C44.8C23 = Q16xD11φ: C23/C2C22 ⊆ Aut C441764-C44.8C2^3352,112
C44.9C23 = Q16:D11φ: C23/C2C22 ⊆ Aut C441764C44.9C2^3352,113
C44.10C23 = D88:5C2φ: C23/C2C22 ⊆ Aut C441764+C44.10C2^3352,114
C44.11C23 = C2xD4:D11φ: C23/C2C22 ⊆ Aut C44176C44.11C2^3352,126
C44.12C23 = D44:6C22φ: C23/C2C22 ⊆ Aut C44884C44.12C2^3352,127
C44.13C23 = C2xD4.D11φ: C23/C2C22 ⊆ Aut C44176C44.13C2^3352,128
C44.14C23 = C2xQ8:D11φ: C23/C2C22 ⊆ Aut C44176C44.14C2^3352,136
C44.15C23 = C44.C23φ: C23/C2C22 ⊆ Aut C441764C44.15C2^3352,137
C44.16C23 = C2xC11:Q16φ: C23/C2C22 ⊆ Aut C44352C44.16C2^3352,138
C44.17C23 = Q8:D22φ: C23/C2C22 ⊆ Aut C44884+C44.17C2^3352,144
C44.18C23 = D4.8D22φ: C23/C2C22 ⊆ Aut C441764C44.18C2^3352,145
C44.19C23 = D4.9D22φ: C23/C2C22 ⊆ Aut C441764-C44.19C2^3352,146
C44.20C23 = C2xD4:2D11φ: C23/C2C22 ⊆ Aut C44176C44.20C2^3352,178
C44.21C23 = D4:6D22φ: C23/C2C22 ⊆ Aut C44884C44.21C2^3352,179
C44.22C23 = C2xQ8xD11φ: C23/C2C22 ⊆ Aut C44176C44.22C2^3352,180
C44.23C23 = C2xD44:C2φ: C23/C2C22 ⊆ Aut C44176C44.23C2^3352,181
C44.24C23 = Q8.10D22φ: C23/C2C22 ⊆ Aut C441764C44.24C2^3352,182
C44.25C23 = C4oD4xD11φ: C23/C2C22 ⊆ Aut C44884C44.25C2^3352,183
C44.26C23 = D4:8D22φ: C23/C2C22 ⊆ Aut C44884+C44.26C2^3352,184
C44.27C23 = D4.10D22φ: C23/C2C22 ⊆ Aut C441764-C44.27C2^3352,185
C44.28C23 = C2xC8:D11φ: C23/C22C2 ⊆ Aut C44176C44.28C2^3352,97
C44.29C23 = C2xD88φ: C23/C22C2 ⊆ Aut C44176C44.29C2^3352,98
C44.30C23 = D88:7C2φ: C23/C22C2 ⊆ Aut C441762C44.30C2^3352,99
C44.31C23 = C2xDic44φ: C23/C22C2 ⊆ Aut C44352C44.31C2^3352,100
C44.32C23 = C8:D22φ: C23/C22C2 ⊆ Aut C44884+C44.32C2^3352,103
C44.33C23 = C8.D22φ: C23/C22C2 ⊆ Aut C441764-C44.33C2^3352,104
C44.34C23 = C22xDic22φ: C23/C22C2 ⊆ Aut C44352C44.34C2^3352,173
C44.35C23 = C2xC8xD11φ: C23/C22C2 ⊆ Aut C44176C44.35C2^3352,94
C44.36C23 = C2xC88:C2φ: C23/C22C2 ⊆ Aut C44176C44.36C2^3352,95
C44.37C23 = D44.2C4φ: C23/C22C2 ⊆ Aut C441762C44.37C2^3352,96
C44.38C23 = M4(2)xD11φ: C23/C22C2 ⊆ Aut C44884C44.38C2^3352,101
C44.39C23 = D44.C4φ: C23/C22C2 ⊆ Aut C441764C44.39C2^3352,102
C44.40C23 = C22xC11:C8φ: C23/C22C2 ⊆ Aut C44352C44.40C2^3352,115
C44.41C23 = C2xC44.C4φ: C23/C22C2 ⊆ Aut C44176C44.41C2^3352,116
C44.42C23 = Q8.Dic11φ: C23/C22C2 ⊆ Aut C441764C44.42C2^3352,143
C44.43C23 = C2xD44:5C2φ: C23/C22C2 ⊆ Aut C44176C44.43C2^3352,176
C44.44C23 = D8xC22φ: C23/C22C2 ⊆ Aut C44176C44.44C2^3352,167
C44.45C23 = SD16xC22φ: C23/C22C2 ⊆ Aut C44176C44.45C2^3352,168
C44.46C23 = Q16xC22φ: C23/C22C2 ⊆ Aut C44352C44.46C2^3352,169
C44.47C23 = C11xC4oD8φ: C23/C22C2 ⊆ Aut C441762C44.47C2^3352,170
C44.48C23 = C11xC8:C22φ: C23/C22C2 ⊆ Aut C44884C44.48C2^3352,171
C44.49C23 = C11xC8.C22φ: C23/C22C2 ⊆ Aut C441764C44.49C2^3352,172
C44.50C23 = Q8xC2xC22φ: C23/C22C2 ⊆ Aut C44352C44.50C2^3352,190
C44.51C23 = C11x2+ 1+4φ: C23/C22C2 ⊆ Aut C44884C44.51C2^3352,192
C44.52C23 = C11x2- 1+4φ: C23/C22C2 ⊆ Aut C441764C44.52C2^3352,193
C44.53C23 = M4(2)xC22central extension (φ=1)176C44.53C2^3352,165
C44.54C23 = C11xC8oD4central extension (φ=1)1762C44.54C2^3352,166
C44.55C23 = C4oD4xC22central extension (φ=1)176C44.55C2^3352,191

׿
x
:
Z
F
o
wr
Q
<